Linear instability of periodic orbits of free period Lagrangian systems

نویسندگان

چکیده

<abstract><p>Minimizing closed geodesics on surfaces are linearly unstable. By starting with this classical Poincaré's instability result, in the present paper we prove a result that allows to deduce linear of periodic solutions autonomous Lagrangian systems admitting an orbit cylinder (condition which is satisfied for instance if transversally non-degenerate) terms parity properties suitable quantity obtained by adding dimension configuration space suitably defined spectral index. Such index coincides Morse seen as critical point free period action functional case Tonelli, namely fibrewise strictly convex and superlinear, it encodes symplectic problem.</p> <p>The main generalization celebrated Poincaré 's at same time extends several previous results have been proved authors (as well others) non-autonomous systems.</p></abstract>

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large minimal period orbits of periodic autonomous systems *

We prove the existence of periodic orbits with minimal period greater than any prescribed number for a natural Lagrangian autonomous system in several variables that is analytic and periodic in each variable and whose potential is nonconstant. Mathematics Subject Classification: 34C25, 37J45

متن کامل

Optimal periodic orbits of chaotic systems occur at low period.

Invariant sets embedded in a chaotic attractor can generate time averages that diier from the average generated by typical orbits on the attractor. Motivated by two diierent topics (namely, controlling chaos and riddled basins of attraction), we consider the question of which invariant set yields the largest (optimal) value of an average of a given smooth function of the system state. We presen...

متن کامل

Periodic orbits from Δ-modulation of stable linear systems

The -modulated control of a single input, discrete time, linear stable system is investigated. The modulation direction is given by where 0 is a given, otherwise arbitrary, vector. We obtain necessary and sufficient conditions for the existence of periodic points of a finite order. Some concrete results about the existence of a certain order of periodic points are also derived. We also study th...

متن کامل

Periodic Orbits of Hamiltonian Systems

5 The Variational principles and periodic orbits 21 5.1 Lagrangian view point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.2 Hamiltonian view point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5.3 Fixed energy problem, the Hill’s region . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.4 Continuation of periodic orbits as critical p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic research archive

سال: 2022

ISSN: ['2688-1594']

DOI: https://doi.org/10.3934/era.2022144